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Purpose. To statistically model the permeability across Caco-2 cell
monolayers using theoretically computed molecular descriptors and
multivariate statistics.

Methods. Seventeen structurally diverse compounds were investigated.
The program MolSurf was used to compute theoretical molecular
descriptors related to physico-chemical properties such as lipophilicity,
polarity, polarizability and hydrogen bonding. The multivariate Partial
Least Squares Projections to Latent Structures (PL.S) method was used
to delineate the relationship between the permeability across Caco-2
cell monolayers and the theoretically computed molecular descriptors.
Results. Excellent statistical models were derived. Properties associ-
ated with hydrogen bonding had the largest impact on diffusion through
the monolayers and should be kept at a minimum to promote high
permeability. High lipophilicity and the presence of surface electrons,
i.e. valence electrons, which are not tightly bonded to the molecule,
were also found to have a favorable influence to achieve high
permeability.

Conclusions. The results indicate that theoretically computed molecu-
lar MolSurf descriptors in conjunction with multivariate statistics of
PLS type can be used to successfully model permeability across Caco-
2 cell monolayers and, thus, differentiate drugs with poor permeability
from those with acceptable permeability at an early stage of the pre-
clinical drug discovery process.
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INTRODUCTION

Drug discovery programs are generally dedicated to the
development of orally active drugs, since this is the preferred
route of administration and often an absolute requirement from
a marketing point of view. The majority of conventional low
molecular weight drugs are absorbed by passive diffusion from
the gut. The extent of absorption is mainly dependent on dose,
solubility/dissolution rate and membrane permeability.

Solubility/dissolution rate and permeability are of equal
importance and an unfavorable value of one parameter may be
compensated by a favorable value of the other. The present
paper focus on a new computational method (MolSurf) which
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can be used for prediction of passive membrane permeability.
Physicochemical properties such as lipophilicity (1) or hy-
drogen bonding capacity (2) correlates with passive membrane
permeability for structurally homogenous data sets. However,
correlations between single physicochemical parameters often
break down when structural diversity is introduced. On the
contrary, transport studies of compounds across monolayers of
human intestinal epithelial cells (i.e. Caco-2 cells) show good
correlation even for heterogeneous sets of compounds (3). The
oral absorption potential can also be predicted by in situ perfu-
sion in the rat with good results (4). However, these methods
are very costly and time consuming and require the synthesis
of at least mg quantities of the test compounds. Thus it would
be of great economic and scientific value if passive membrane
permeability could be predicted a priori with high precision
by a computational method. Work in this direction has been
published recently. van de Waterbeemd er. al. reported that
calculated polar van der Waals surface area was correlated
with permeability across the blood brain barrier (5) and that
calculated molecular descriptors (mainly hydrogen bonding and
molecular size) could be used to estimate passive membrane
permeability across Caco-2 cells (6). Palm and co-workers
reported the use of dynamic polar van der Waals surface area
to predict passive permeability over Caco-2 cells and rat ileum
(7). In this paper we describe a new tool for the prediction of
Caco-2 cell permeability. The relationship between permeability
and the molecular properties have been investigated using quan-
titative structure-property analysis based on MolSurf (8) param-
etrization with the Partial Least Squares Projections to Latent
Structures (PLS) method (9) as statistical engine.

METHOD OF CALCULATION

Data Set

The following 17 compounds, previously studied by van
de Waterbeemd et. al. (6), were used: Acetylsalicylate (Ac),
Alprenolol (Al), Atenolol (At), Corticosterone (Co), Dexameth-
asone (De), Felodipine (Fe), Hydrocortisone (Hy), Mannitol
(Ma), Metoprolol (Me), Olsalazine (Ol), Practolol (Pa), Pro-
pranolol (Pr), Salicylic acid (Sa), Sulfasalazine (Su), Terbutaline
(Tb), Testosterone (Te) and Warfarin (Wa).

Caco-2 Cell Permeability Data

The experimental permeability values for the data set com-
pounds were taken from Artursson and Karlsson (3) and are
given in Table 1.

Calculated MolSurf Parameters

A summary of the computational protocol described in
this section is depicted in Figure 1.

Conformational Analysis

The structures of the investigated compounds were built
in Macromodel (10) and were modeled in their neutral forms.
The three-dimensional structures were determined by Monte-
Carlo—based conformational analysis performed with the Mac-
roModel program package using the Merck Molecular Force
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Table 1. Experimental, Calculated and Predicted Permeability Values Over Caco-2 Cells

PLS model of log (Permeability)*

1 2 3 4

Compound exp.? calc.c pred.? calc. pred. calc. calc.

At —6.700 —6.247 ~6.337 -6.174 —6.323
De —4.903 —5.062 —5.044 —5.082 —4.988
Ma —6.745 —6.837 -7.127 —6.693 —6.863
Ol —6.959 —6.875 -6.747 —6.804 -6.719
Pr —4.378 —4.886 —4.688 —4.816 —4.785
Sa —4.924 ~4.996 ~5.078 —5.258 —5.268
Su —6.886 —7.065 ~7.042 -7.229 -7.251
Tb —6.420 -6.322 —6.071 —6.384 —6.081
Wa —4417 —4.041 —4.197 -4.125 —4.316
Ac —5.620 —4.623 —4.851 —4.997 -5.112
Al —4.393 —4.864 —4.653 —4.769 —4.731
Co —4.263 —4.449 —4.521 —4.459 —4.549
Fe —4.644 —4.420 —4.295 —4.411 —4.407
Hy —4.668 —5.090 —5.095 —5.051 —5.023
Me —4.569 —4.779 —4.490 -4.692 —4.612
Pa —6.046 —5.845 —5.823 —5.839 -5.902
Te —4.286 —4.012 —3.785 —4.038 —3.892

¢ PLS models; 1 = Based on training set compounds with all variables, 2 = Based on training set compounds with the
reduced set of variables, 3 = Based on all compounds with all variables, 4 = Based on all compounds with the reduced

set of variables.

® Experimental log (Permeability) values taken from ref. 3.

¢ Calculated/fitted log (Permeability) values for the training set.

4 Predicted log (Permeability) values for the test set.

Field (MMFF). One hundred starting conformations were gen-
erated for each structure. The energy minimizations were per-
formed in vacuum. Unique minimized conformations within
5 kJ/mol of the lowest energy conformation were saved for
further studies.

Semi-empirical Calculations

The conformation with the lowest found energy from the
previous conformational analysis was subjected to a geometry
optimization (energy minimization) using the semi-empirical

Conformational Analysis
Macromodel

Monte-Carlo procedure, MMFF force field
100 starting conformations

unique minimized conformations within
S kl/mol saved

Semi-empirical calculations
Spartan

Lowest encrgy ion from 1 analysis

complele gecometry optimization {AM1 method)

Ab-Initio calculations
Spartan
3-21G* level (single point calculation)

MolSurf Calculations
Wave-function from ab inétio calculation
Electrostatic potential, V(1)
Local ionization energy, I(r)

Fig. 1. The computational protocol used to compute the theoretical
MolSurf molecular descriptors.

quantum chemistry based AM1 method available in the Spartan
program (11).

Ab-Initio Calculation

A quantum mechanical ab initio calculation using a 3-
21G* basis set without further geometry optimization (single
point calculation) was subsequently performed on all AMI1
optimized (minimized) conformations using the Spartan pro-
gram (11). The ab initio calculations were done to obtain a
wave function, i.e. a quantum chemical description, of good
quality for each investigated compound (12).

MolSurf Calculations

The wave-function from each ab initio calculation was
used by MolSurf (8) to compute various properties related to
the molecular valence region. The chemical behavior and,
hence, the calculated properties depend on the distribution of
electrons and energy in the valence region. This region is repre-
sented by a surface of constant electron density (0.001 electrons/
bohr?) encompassing the molecule. The electrostatic potential,
V(r), and the local ionization energy, I(r), are calculated at
points evenly distributed (0.28 bohr apart) on this surface. The
former property, V(r), is related to the potential registered by
a probe of positive unit charge positioned at each of the points
on the surface. Similarly, the latter property, I(r), is the energy
required to remove an electron from the molecule at each of
the points on the surface. The computed descriptors describe
properties such as base strength, hydrophobicity, hydrogen
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Table 2. Computed MolSurf Descriptors

# Descriptor Designation

1 Surface

2 Octanol/Water Partition Coefficient logP

3 Polarizability

4 Polarity

5 Lewis base LB

6 Lewis acid LA

7 Hydrogen bond acceptor strength for oxygen atoms HBAo
8 Number of hydrogen bond acceptor oxygen atoms  #HBAo
9 Hydrogen bond donor strength HBD
10 Number of hydrogen bond donor atoms #HBD
11 Sum of HBAn, HBAo and HBD SHB
12 Hydrogen bond acceptor strength for nitrogen atoms HBAn
13 Number of hydrogen bond acceptor nitrogen atoms  #HBAn

bonding, polarity as well as polarizability (see Table 2 for a
list of calculated descriptors).

MolSurf parameters were calculated for the entire com-
pound as well as for individual atoms contributing to hydrogen
bonding. The number of possible hydrogen bond acceptors and
donors, respectively, were also used as descriptors. The former
were partitioned into two categories of oxygen and nitrogen
type. This division of hydrogen bond acceptor types also applies
to the corresponding variables using the actual computed hydro-
gen bond acceptor strengths. Additionally, the sum of the hydro-
gen bond acceptor and donor strengths was used as a descriptor.

Statistical Analysis

Training Set Selection

A training set consisting of 9 molecules was selected using
the maximin approach of Marengo and Todeschini (13). The
method works through an exchange algorithm where, in each
cycle, a substitution is selected to provide the maximum increase
of the minimum distance between the currently selected com-
pounds. The procedure provides a final uniform distribution of
the selected compounds from all available structures in parame-
ter (chemical property) space. One hundred random starting
points were used. The solution of 9 selected compounds with
the largest found minimum distance between two compounds
was used as the training set. The remaining 8 structures were
used as an external test set to assess the predictivity of the
derived models. The parameter space in this case was the scores
of the first 5 principal components from a principal component
analysis (PCA, see section on principal component analysis)
on the 13 MolSurf parameters (see Table 2 for a list) computed
for each compound of the entire data set.

Principal Component Analysis

A principal component analysis (PCA) (14-16) was per-
formed on the descriptor matrix for the data set. In short, a
PCA reexpresses the descriptor matrix X (e.g. a set of data
collected for a number of compounds) as a mean vector plus
the product of a few column score matrix T times a few row
matrix P’. The PC-scores t contained in T provide the best
linear summary of X with respect to compound description.
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These variables, often referred to as principal properties, are
well suited as ‘condensed’ descriptors since they are few and
orthogonal (independent) and are possible to interpret in terms
of what particular aspects of the structures they reflect. In PCA,
and other statistical methods as well, it is important to give the
variables in the matrix an equal chance (weight) to influence
the analysis regardless of their respective scales. This was
ensured by an autoscaling procedure where the variance of each
column was scaled to unit variance.

PLS Analysis

The relationship between the experimentally determined
Caco-2 cell permeability values (log scale) and the computed
MolSurf properties for the data set compounds was determined
using the PLS (Partial Least Squares Projections to Latent Struc-
tures) method (9). The PLS method used in this work calculates
one component at a time and stops when the added information
becomes insignificant, as determined by a cross-validatory pro-
cedure (see below for details). In this way PLS summarizes
the original variables stored in the descriptor matrix X as a few
orthogonal new variables called scores (t) which are collected
in the (few) column score matrix T. The scores are linear
combinations of the original variables. The PLS method solves
the problems of forming the model Y = f(T) and finding the
coefficients (loadings) of the original variables that form each
t at the same time. The loadings are collected in the row matrix
P’. The PLS model, as expressed through the score matrix T,
can subsequently be transformed into ‘regression’ coefficients
of the original variables for comparison purposes so that the
influence of each variable can be analyzed in a straight forward
manner as is the case for ordinary multiple regression methods.
The number of significant components is determined using a
leave-one-out cross-validatory procedure (LOO-cv) (17). In
such a procedure each compound is removed from the data set
once and the remaining compounds are used to develop each
model. The left out compound is then predicted from the devel-
oped model. The sum of the squared difference between pre-
dicted activity and experimental activity for the left out
compounds (predictive residual sum of squares; PRESS) is
computed. If the PRESS value is smaller for the latest calculated
PLS component compared to the previous component then the
former component is judged to be significant and kept in the
model. Thus, the model with the smallest computed PRESS
value is used. In order to avoid overfitting of the data a maxi-
mum of five PLS components was set as a limit.

A simple variable selection was also performed using a
leave-one-out approach where each variable was left out of the
model and its importance for predictivity, as judged by a leave-
one-out cross-validation procedure (ref. 16, see above for an
explanation), of the training set was assessed. If the predictivity
of the model increased then the variable in question was perma-
nently removed from model and otherwise the variable was
kept permanently in the model.

Four analyses were performed: Two on the 9 training set
compounds (see section on Training set selection for details)
and two other on the entire data set of 17 structures.
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Table 3. PLS Statistics of the Derived Caco-2 Permeability Models®
Model R? cv-R? Npc N sdev F RMSE" p RMSEcv* Ne RMSEp©
1 0.932 0.738 2 9 0.340 40.88 0.277 <0.001 0.543 8 0.453
2 0.935 0.849 2 9 0.331 43.23 0.270 <0.001 0.412 8 0.409
3 0.901 0.791 2 17 0.352 63.43 0.319 <0.001 0.462
4 0.909 0.852 2 17 0.336 70.27 0.305 <0.001 0.390

@ Model: see Table 1 for an explanation; R?: ordinary correlation coefficient; cv-R?: cross-validated (LOO) correlation coefficient; Npc: Number
of PLS components; N': Number of compounds in the training set; sdev: standard deviation; F: ordinary F-value; RMSE": Ordinary root
mean squared error for the dependent variable of the training set; p: level of significance; RMSEcv": Root mean squared error for the
dependent variable from the cross-validation procedure of the training set; N'*; Number of compounds in the test set; RMSEp': Root mean
squared error for the dependent variable of the test set.

RESULTS

Principal Component Analysis

Table 4. Scaled PLS Regression Coefficients of the Models Based on
the Reduced Set of Variables?

The PCA (principal component analysis) resulted in 5
principal components which explained 86.4% of the variance
in the original matrix. The first to fifth component explained
24.8, 28.2, 15.3, 9.6 and 8.5%, respectively.

Training Set Selection

The selection of 9 training set compounds out of the 17

available molecules gave the following result. Compounds
Atenolol (At), Dexamethasone (De), Mannitol (Ma), Olsalazine
(O)), Propranolol (Pr), Salicylic acid (Sa), Sulfasalazine (Su),
Terbutaline (Tb) and Warfarin (Wa) were selected as training set.

PLS Analysis

The PLS analysis of the training set compounds using
all the computed MolSurf descriptors (model 1) resulted in 2
significant PLS components according to cross-validation with
R2? = 0.932, cross-validated R? = 0.738, s = 0.340, F = 40.87,
RMSE = 0.277 and p < 0.001. The corresponding analysis
using the descriptors remaining after variable selection, i.e.
excluding variables 5,6,9 and 11 (model 2) resulted in 2 signifi-
cant PLS components according to cross-validation with R? =
0.935, cross-validated R? = 0.849, s = 0.331, F = 43.23,
RMSE = 0.270 and p < 0.001. The PLS analysis on the entire
data set also resulted in 2 significant PLS components according
to cross-validation with R? = 0.901, cross-validated R?> = 0.791,
s = 0.352, F = 63.434, RMSE = 0.319 and p < 0.001 using
all variables (model 3) while the corresponding values for the
analysis based on the reduced set of parameters, i.e. excluding
descriptors # S, 6, 9, and 11, (model 4) were 0.909, 0.852,
0.336, 70.27, 0.305 and p < 0.001, respectively.

The results of all four PLS analyses are summarized in
Table 3. The values for the PLS coefficients of the reduced
parameter set models 2 and 4 are given in Table 4. Plots of
experimental vs. calculated/predicted permeabilities for models
2 and 4 are shown in Figures 2 and 3, respectively.

DISCUSSION

The result of the training set selection is satisfactory not
only from a statistical point of view since PLS models with
good statistics and predictivity were developed (see below for
further discussions) but also from a structural point of view.

MolSurf descriptor Model 2 Model 4
Surface 0.0782 0.0922
logP 0.1289 0.1234
Polarizability 0.1040 0.1138
Polarity —0.0864 —0.1561
HBAo —0.0558 —0.0279
#HBAo —0.2101 —0.1795
#HBD —0.4662 —0.3582
HBAn —0.3474 —0.3435
#HBAn -0.3422 —0.3525

¢ Model: see Table 1 for an explanation.

The 9 compounds selected as the training set covers the struc-
tural classes of the data set rather well. Thus, there are represen-
tatives of both B-adrenergic compounds, steroids, organic acids,
azo compounds as well as carbohydrates in the training set.
At the start of this investigation we did not separate the
hydrogen bonding acceptors (HBAs) into oxygen and nitrogen
types. However, during the first PLS analyses of the training
set we noticed that compounds containing nitrogen hydrogen
bonding acceptors were poorly predicted. This gave us the idea
to separate the HBAs into nitrogen and oxygen types. This
division resulted in a much better model with good internal as
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Fig. 2. Relationship between experimental and calculated/predicted
permeability (PLS model 2) over Caco-2 cell monolayers for the
model drugs.
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Fig. 3. Relationship between experimental and calculated permeability
(PLS model 4) over Caco-2 cell monolayers for the model drugs.

well as external predictivity as assessed by the cross-validatory
procedure and the test set compounds, respectively. At this
point we performed the variable selection. By removing the
descriptors that proved detrimental to predictivity i.e. variables
5, 6,9 and 11, for the training set we were able to develop a
statistically better model with improved predictivity for both
the training set and the test set (see Table 3). Both training set
models (1 & 2) are well balanced since the predicted RMSE
values of these models (RMSEcv") are comparable to the corres-
ponding values for the test set.

The same type of statistical improvement with respect to
internal validation and other statistics were found for the PLS
models based on the entire data set when removing variables
5, 6,9, and 11 (the same variables as for model 2). Furthermore,
since both final models (2 & 4) using the reduced set of variables
show the same overall statistics the change in coefficients
between the models is small and the correlation coefficient
between the two sets of coefficients is high (0.982).

What are the physico-chemical interpretations from the
results of the PLS analyses? The most important factors influ-
encing the model are associated with hydrogen bonding. Thus,
variables such as the number of possible hydrogen donor atoms
as well as the number of hydrogen bond acceptor nitrogens
have the greatest impact along with the actual strength of the
hydrogen bond in the latter case. All these properties should
be kept to a minimum to facilitate high permeability. This fact
was also observed by van de Waterbeemd et.al. in their work
(6). Additional factors that are important for high permeability
are the absence of hydrogen bond acceptors related to oxygen
atoms as well as an over-all non-polar character of the structure.
An interesting observation is that the derived models attribute
greater (or equal in the case of HBAn) weight to the hydrogen
bond variables related to the number of possible sites that may
engage in such interactions than the actual strength of the same
interactions. One tentative explanation may be that it is more
detrimental to the transport of the molecule across the mem-
brane to have many, but weaker, hydrogen bond interactions,
possibly arranged in some sort of network configuration, than
a few but stronger hydrogen bond contacts. As may be expected
for processes of this kind, high lipophilicity (logP) of the com-
pound is also favorable for efficient permeability. Further more,
the presence of polarizable electrons, e.g. conjugated and aro-
matic substructures as well as the larger halogens, are also
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Fig. 4. Sigmoidal relationship between calculated permeability over

Caco-2 cell monolayers for the 17 structurally heterogenous model

drugs and absorption in humans after oral administration.

beneficial for the compound to penetrate the membrane effec-
tively. One interpretation of this property may be that com-
pounds having many polarizable electrons can act as molecular
chameleons. Thus, the polarizable electrons are first used to
promote induced interactions of an electrostatic nature, e.g.
induced dipole-dipole and induced dipole-induced dipole inter-
actions, in the more hydrophilic phase as the compound is
transported towards the membrane surface. Once the compound
reaches the membrane and starts to penetrate across the mem-
brane the same polarizable electrons are now used to minimize
the electrostatic interactions in order to become as unpolar and
electrostatically ‘inert’ as possible in the more lipophilic phase.
Part of the information content of the polarizable variable may
also be related to charge-transfer interactions. An indication
towards this interpretation stems from the fact that the addition
of a charge-transfer term to the models results in a positive
PLS coefficient, i.e. such interactions seem to promote high
permeability, although the addition of the term itself does not
alter the overall statistics of the derived PLS models (18).

Thus PLS models with good predictability and overall
statistical quality have been derived for the transport of small
molecules across Caco-2 cell monolayers. Furthermore, these
statistical PLS models are based on a physico-chemical MolSurf
parametrization that makes them easy to interpret with respect
to structural requirements that promote high permeability. Also,
the parametrization gives rise to new possible insights with
respects to the mechanisms operating during the transport of
small molecules across membranes. However, as was mentioned
in the introduction the main use of Caco-2 cell permeability
data is to predict oral absorption in humans. Figure 4 illustrates
the sigmoidal relationship between calculated permeability
across Caco-2 cell monolayers and oral absorption in humans.
Further work is under way to model oral absorption in humans
directly and to investigate transport across other types of mem-
branes using MolSurf parametrization and multivariate PLS
statistics. We hope to report the results of these studies in the
near future.
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